{ "id": "1403.3211", "version": "v3", "published": "2014-03-13T09:34:34.000Z", "updated": "2014-07-21T08:01:09.000Z", "title": "Positive ground states for a system of Schrödinger equations with critically growing nonlinearities", "authors": [ "Pietro d'Avenia", "Jarosław Mederski" ], "comment": "19 pages, pre-peer version, to appear in Calc. Var. Partial Differential Equations", "categories": [ "math.AP" ], "abstract": "We study the following problem \\[ \\begin{cases} -\\Delta u = \\lambda u + u^{2^*-2} v & \\hbox{in} \\Omega,\\\\ -\\Delta v= \\mu v^{2^*-1} + u^{2^*-1} & \\hbox{in} \\Omega,\\\\ u> 0,v> 0 & \\hbox{in} \\Omega,\\\\ u=v=0 & \\hbox{on} \\partial \\Omega, \\end{cases} \\] where $\\Omega$ is a bounded domain of $\\mathbb{R}^N$, $N\\geq 4$, $2^*=2N/(N-2)$, $\\lambda\\in\\mathbb{R}$ and $\\mu\\geq 0$ and we obtain existence and nonexistence results, depending on the value of the parameters $\\lambda$ and $\\mu$.", "revisions": [ { "version": "v3", "updated": "2014-07-21T08:01:09.000Z" } ], "analyses": { "subjects": [ "35J57", "35A01", "35B33", "35J50" ], "keywords": [ "positive ground states", "critically growing nonlinearities", "schrödinger equations", "nonexistence results", "bounded domain" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.3211D" } } }