arXiv:1402.0120 [math.NT]AbstractReferencesReviewsResources
Arithmetic of positive characteristic L-series values in Tate algebras
Bruno Angles, Federico Pellarin, Floric Tavares-Ribeiro
Published 2014-02-01, updated 2015-05-26Version 4
The second author has recently introduced a new class of L-series in the arithmetic theory of function fields over finite fields. We show that the value at one of these L-series encode arithmetic informations of certain Drinfeld modules defined over Tate algebras. This enables us to generalize Anderson's log-algebraicity Theorem and Taelman's Herbrand-Ribet Theorem.
Comments: final version
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1601.07348 [math.NT] (Published 2016-01-27)
A note on multiple zeta values in Tate algebras
arXiv:1609.08873 [math.NT] (Published 2016-09-28)
A sum-shuffle formula for zeta values in Tate algebras
arXiv:1805.05386 [math.NT] (Published 2018-05-14)
The de Rham isomorphism for Drinfeld modules over Tate algebras