{ "id": "1402.0120", "version": "v4", "published": "2014-02-01T20:00:35.000Z", "updated": "2015-05-26T09:49:50.000Z", "title": "Arithmetic of positive characteristic L-series values in Tate algebras", "authors": [ "Bruno Angles", "Federico Pellarin", "Floric Tavares-Ribeiro" ], "comment": "final version", "categories": [ "math.NT" ], "abstract": "The second author has recently introduced a new class of L-series in the arithmetic theory of function fields over finite fields. We show that the value at one of these L-series encode arithmetic informations of certain Drinfeld modules defined over Tate algebras. This enables us to generalize Anderson's log-algebraicity Theorem and Taelman's Herbrand-Ribet Theorem.", "revisions": [ { "version": "v3", "updated": "2014-05-18T19:15:13.000Z", "comment": "minor corrections. added Section 10 with connection with the theory of global L-series", "journal": null, "doi": null }, { "version": "v4", "updated": "2015-05-26T09:49:50.000Z" } ], "analyses": { "keywords": [ "positive characteristic l-series values", "tate algebras", "l-series encode arithmetic informations", "generalize andersons log-algebraicity theorem", "taelmans herbrand-ribet theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.0120A" } } }