arXiv:1401.2279 [math.AP]AbstractReferencesReviewsResources
Sub-Gaussian heat kernel estimates and quasi Riesz transforms for $1\leq p\leq 2$
Published 2014-01-10, updated 2019-08-20Version 2
On a complete non-compact Riemannian manifold $M$, we prove that a so-called quasi Riesz transform is always $L^p$ bounded for $1<p\leq 2$. If $M$ satisfies the doubling volume property and the sub-Gaussian heat kernel estimate, we prove that the quasi Riesz transform is also of weak type $(1,1)$.
Comments: Final version, published in Publ. Mat., 2015
Keywords: sub-gaussian heat kernel estimate, quasi riesz transform, complete non-compact riemannian manifold, weak type, doubling volume property
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1906.05519 [math.AP] (Published 2019-06-13)
Weak type $(1,1)$ bounds for Schrödinger groups
arXiv:2007.01468 [math.AP] (Published 2020-07-03)
Weak type $(p,p)$ bounds for Schrödinger groups via generalized Gaussian estimates
arXiv:1810.03055 [math.AP] (Published 2018-10-06)
Superlinear elliptic inequalities on manifolds