{ "id": "1401.2279", "version": "v2", "published": "2014-01-10T10:33:59.000Z", "updated": "2019-08-20T03:27:21.000Z", "title": "Sub-Gaussian heat kernel estimates and quasi Riesz transforms for $1\\leq p\\leq 2$", "authors": [ "Li Chen" ], "comment": "Final version, published in Publ. Mat., 2015", "doi": "10.5565/PUBLMAT_59215_03", "categories": [ "math.AP", "math.CA" ], "abstract": "On a complete non-compact Riemannian manifold $M$, we prove that a so-called quasi Riesz transform is always $L^p$ bounded for $1