arXiv Analytics

Sign in

arXiv:1401.0917 [math.PR]AbstractReferencesReviewsResources

Subdiffusive concentration in first-passage percolation

Michael Damron, Jack Hanson, Philippe Sosoe

Published 2014-01-05, updated 2014-11-10Version 2

We prove exponential concentration in i.i.d. first-passage percolation in $Z^d$ for all $d \geq 2$ and general edge-weights $(t_e)$. Precisely, under an exponential moment assumption $E e^{\alpha t_e}< \infty$ for some $\alpha>0$) on the edge-weight distribution, we prove the inequality $$ P(|T(0,x)-E T(0,x)| \geq \lambda \sqrt{\frac{|x|}{log |x|}}) \leq ce^{-c' \lambda}, |x|>1 $$ for the point-to-point passage time $T(0,x)$. Under a weaker assumption $E t_e^2(\log t_e)_+< \infty$ we show a corresponding inequality for the lower-tail of the distribution of $T(0,x)$. These results extend work of Benaim-Rossignol to general distributions.

Comments: 31 pages, the main discrete derivative bound is now simplified, formulated in terms of integrating over uniform variables
Categories: math.PR
Subjects: 60K35, 60E15
Related articles: Most relevant | Search more
arXiv:1311.0316 [math.PR] (Published 2013-11-01, updated 2014-11-02)
Variational formula for the time-constant of first-passage percolation
arXiv:1709.09613 [math.PR] (Published 2017-09-27)
The size of the boundary in first-passage percolation
arXiv:2302.11367 [math.PR] (Published 2023-02-22)
Chaos, concentration and multiple valleys in first-passage percolation