{ "id": "1401.0917", "version": "v2", "published": "2014-01-05T17:52:05.000Z", "updated": "2014-11-10T03:17:45.000Z", "title": "Subdiffusive concentration in first-passage percolation", "authors": [ "Michael Damron", "Jack Hanson", "Philippe Sosoe" ], "comment": "31 pages, the main discrete derivative bound is now simplified, formulated in terms of integrating over uniform variables", "categories": [ "math.PR" ], "abstract": "We prove exponential concentration in i.i.d. first-passage percolation in $Z^d$ for all $d \\geq 2$ and general edge-weights $(t_e)$. Precisely, under an exponential moment assumption $E e^{\\alpha t_e}< \\infty$ for some $\\alpha>0$) on the edge-weight distribution, we prove the inequality $$ P(|T(0,x)-E T(0,x)| \\geq \\lambda \\sqrt{\\frac{|x|}{log |x|}}) \\leq ce^{-c' \\lambda}, |x|>1 $$ for the point-to-point passage time $T(0,x)$. Under a weaker assumption $E t_e^2(\\log t_e)_+< \\infty$ we show a corresponding inequality for the lower-tail of the distribution of $T(0,x)$. These results extend work of Benaim-Rossignol to general distributions.", "revisions": [ { "version": "v1", "updated": "2014-01-05T17:52:05.000Z", "abstract": "We prove exponential concentration in i.i.d. first-passage percolation in $Z^d$ for all $d \\geq 2$ and general edge-weights $(t_e)$. Precisely, under an exponential moment assumption $E e^{\\alpha t_e}< \\infty$ for some $\\alpha>0$) on the edge-weight distribution, we prove the inequality $$ P\\left(|T(0,x)-E T(0,x)| \\geq \\lambda \\sqrt{\\frac{|x|}{log |x|}}\\right) \\leq ce^{-c' \\lambda},~|x|>1 $$ for the point-to-point passage time $T(0,x)$. Under a weaker assumption $E t_e^2(\\log t_e)_+< \\infty$ we show a corresponding inequality for the lower-tail of the distribution of $T(0,x)$. These results extend work of Benaim-Rossignol to general distributions.", "comment": "30 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-10T03:17:45.000Z" } ], "analyses": { "subjects": [ "60K35", "60E15" ], "keywords": [ "first-passage percolation", "subdiffusive concentration", "exponential moment assumption", "results extend work", "point-to-point passage time" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.0917D" } } }