arXiv Analytics

Sign in

arXiv:1312.7698 [math.FA]AbstractReferencesReviewsResources

On the Bishop-Phelps-Bollobás property for numerical radius

Sun Kwang Kim, Han Ju Lee, Miguel Martín

Published 2013-12-30, updated 2014-04-01Version 3

We study the Bishop-Phelps-Bollob\'as property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces ensuring the BPBp-nu. Among other results, we show that $L_1(\mu)$-spaces have this property for every measure $\mu$. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikod\'{y}m property (even reflexivity) is not enough to get BPBp-nu.

Journal: Abstract and Applied Analysis, Volume 2014, Article ID 479208, 16 pages
Categories: math.FA
Subjects: 46B20, 46B04, 46B22
Related articles: Most relevant | Search more
arXiv:1212.6761 [math.FA] (Published 2012-12-30, updated 2013-04-25)
On the Bishop-Phelps-Bollobas property for numerical radius in C(K)-spaces
arXiv:1301.4574 [math.FA] (Published 2013-01-19)
The Bishop-Phelps-Bollobás property for numerical radius in $\ell_1(\mathbb{C})$
arXiv:2004.10649 [math.FA] (Published 2020-04-22)
Some stability properties for the Bishop--Phelps--Bollobás property for Lipschitz maps