{ "id": "1312.7698", "version": "v3", "published": "2013-12-30T12:50:44.000Z", "updated": "2014-04-01T11:37:55.000Z", "title": "On the Bishop-Phelps-Bollobás property for numerical radius", "authors": [ "Sun Kwang Kim", "Han Ju Lee", "Miguel Martín" ], "journal": "Abstract and Applied Analysis, Volume 2014, Article ID 479208, 16 pages", "doi": "10.1155/2014/479208", "categories": [ "math.FA" ], "abstract": "We study the Bishop-Phelps-Bollob\\'as property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces ensuring the BPBp-nu. Among other results, we show that $L_1(\\mu)$-spaces have this property for every measure $\\mu$. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikod\\'{y}m property (even reflexivity) is not enough to get BPBp-nu.", "revisions": [ { "version": "v3", "updated": "2014-04-01T11:37:55.000Z" } ], "analyses": { "subjects": [ "46B20", "46B04", "46B22" ], "keywords": [ "numerical radius", "bishop-phelps-bollobás property", "infinite-dimensional separable banach space", "bishop-phelps-bollobas property", "sufficient conditions" ], "tags": [ "journal article" ], "publication": { "publisher": "Hindawi", "journal": "Adv. High Energ. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7698K" } } }