arXiv Analytics

Sign in

arXiv:1312.7646 [quant-ph]AbstractReferencesReviewsResources

Short random circuits define good quantum error correcting codes

Winton Brown, Omar Fawzi

Published 2013-12-30Version 1

We study the encoding complexity for quantum error correcting codes with large rate and distance. We prove that random Clifford circuits with $O(n \log^2 n)$ gates can be used to encode $k$ qubits in $n$ qubits with a distance $d$ provided $\frac{k}{n} < 1 - \frac{d}{n} \log_2 3 - h(\frac{d}{n})$. In addition, we prove that such circuits typically have a depth of $O( \log^3 n)$.

Comments: 5 pages
Journal: Proceedings of ISIT 2013, pages 346 - 350
Categories: quant-ph, cs.IT, math.IT
Subjects: E.4, F.1.1
Related articles: Most relevant | Search more
arXiv:quant-ph/9809081 (Published 1998-09-28, updated 1999-04-28)
Concatenating Decoherence Free Subspaces with Quantum Error Correcting Codes
arXiv:0706.3400 [quant-ph] (Published 2007-06-22)
Channel-Adapted Quantum Error Correction
arXiv:quant-ph/0211088 (Published 2002-11-15)
Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation