{ "id": "1312.7646", "version": "v1", "published": "2013-12-30T07:24:00.000Z", "updated": "2013-12-30T07:24:00.000Z", "title": "Short random circuits define good quantum error correcting codes", "authors": [ "Winton Brown", "Omar Fawzi" ], "comment": "5 pages", "journal": "Proceedings of ISIT 2013, pages 346 - 350", "doi": "10.1109/ISIT.2013.6620245", "categories": [ "quant-ph", "cs.IT", "math.IT" ], "abstract": "We study the encoding complexity for quantum error correcting codes with large rate and distance. We prove that random Clifford circuits with $O(n \\log^2 n)$ gates can be used to encode $k$ qubits in $n$ qubits with a distance $d$ provided $\\frac{k}{n} < 1 - \\frac{d}{n} \\log_2 3 - h(\\frac{d}{n})$. In addition, we prove that such circuits typically have a depth of $O( \\log^3 n)$.", "revisions": [ { "version": "v1", "updated": "2013-12-30T07:24:00.000Z" } ], "analyses": { "subjects": [ "E.4", "F.1.1" ], "keywords": [ "quantum error correcting codes", "short random circuits define", "random clifford circuits", "large rate" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7646B" } } }