arXiv Analytics

Sign in

arXiv:1312.6738 [math.NT]AbstractReferencesReviewsResources

Class Numbers and Algebraic Tori

Akinari Hoshi, Ming-chang Kang, Aiichi Yamasaki

Published 2013-12-24, updated 2014-01-06Version 2

Let $p$ be an odd prime number, $D_p$ be the dihedral group of order $2p$, $h_p$ and $h^+_p$ be the class numbers of $\bm{Q}(\zeta_p)$ and $\bm{Q}(\zeta_p+ \zeta_p^{-1})$ respectively. Theorem. $h_p^+=1$ if and only if, for any field $k$ admitting a $D_p$-extension, all the algebraic $D_p$-tori over $k$ are stably rational. A similar result for $h_p=1$ and $C_p$-tori is valid also.

Comments: A 2-page appendix is added
Categories: math.NT, math.AG
Subjects: 14E08, 11R33, 20C10
Related articles: Most relevant | Search more
arXiv:1406.0949 [math.NT] (Published 2014-06-04, updated 2015-01-19)
Algebraic tori revisited
arXiv:1503.04543 [math.NT] (Published 2015-03-16)
Relation modules of dihedral groups
arXiv:math/0211120 [math.NT] (Published 2002-11-06)
Quaternions, polarizations and class numbers