{ "id": "1312.6738", "version": "v2", "published": "2013-12-24T01:58:58.000Z", "updated": "2014-01-06T07:01:14.000Z", "title": "Class Numbers and Algebraic Tori", "authors": [ "Akinari Hoshi", "Ming-chang Kang", "Aiichi Yamasaki" ], "comment": "A 2-page appendix is added", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $p$ be an odd prime number, $D_p$ be the dihedral group of order $2p$, $h_p$ and $h^+_p$ be the class numbers of $\\bm{Q}(\\zeta_p)$ and $\\bm{Q}(\\zeta_p+ \\zeta_p^{-1})$ respectively. Theorem. $h_p^+=1$ if and only if, for any field $k$ admitting a $D_p$-extension, all the algebraic $D_p$-tori over $k$ are stably rational. A similar result for $h_p=1$ and $C_p$-tori is valid also.", "revisions": [ { "version": "v2", "updated": "2014-01-06T07:01:14.000Z" } ], "analyses": { "subjects": [ "14E08", "11R33", "20C10" ], "keywords": [ "class numbers", "algebraic tori", "odd prime number", "dihedral group", "similar result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.6738H" } } }