arXiv:1312.5570 [math.AP]AbstractReferencesReviewsResources
Global gradient estimates for the $p(\cdot)$-Laplacian
Lars Diening, Sebastian Schwarzacher
Published 2013-12-19Version 1
We consider Calder\'on-Zygmund type estimates for the non-homogeneous $p(\cdot)$-Laplacian system $ -\text{div}(|D u|^{p(\cdot)-2} Du) = -\text{div}(|G|^{p(\cdot)-2} G),$ where $p$ is a variable exponent. We show that $|G|^{p(\cdot)} \in L^q(\mathbb{R}^n)$ implies $|D u|^{p(\cdot)} \in L^q(\mathbb{R}^n)$ for any $q \geq 1$. We also prove local estimates independent of the size of the domain and introduce new techniques to variable analysis.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:2107.06043 [math.AP] (Published 2021-07-13)
Local regularity for nonlocal equations with variable exponents
arXiv:1210.1397 [math.AP] (Published 2012-10-04)
An Eigenvalue Problem with variable exponents
arXiv:2106.01985 [math.AP] (Published 2021-06-03)
Boundary regularity estimates in Hölder spaces with variable exponent