{ "id": "1312.5570", "version": "v1", "published": "2013-12-19T14:52:16.000Z", "updated": "2013-12-19T14:52:16.000Z", "title": "Global gradient estimates for the $p(\\cdot)$-Laplacian", "authors": [ "Lars Diening", "Sebastian Schwarzacher" ], "categories": [ "math.AP" ], "abstract": "We consider Calder\\'on-Zygmund type estimates for the non-homogeneous $p(\\cdot)$-Laplacian system $ -\\text{div}(|D u|^{p(\\cdot)-2} Du) = -\\text{div}(|G|^{p(\\cdot)-2} G),$ where $p$ is a variable exponent. We show that $|G|^{p(\\cdot)} \\in L^q(\\mathbb{R}^n)$ implies $|D u|^{p(\\cdot)} \\in L^q(\\mathbb{R}^n)$ for any $q \\geq 1$. We also prove local estimates independent of the size of the domain and introduce new techniques to variable analysis.", "revisions": [ { "version": "v1", "updated": "2013-12-19T14:52:16.000Z" } ], "analyses": { "subjects": [ "35J60", "35B65", "35B45", "35Q35" ], "keywords": [ "global gradient estimates", "calderon-zygmund type estimates", "local estimates independent", "laplacian system", "variable exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.5570D" } } }