arXiv:1312.2509 [math.AP]AbstractReferencesReviewsResources
Parabolic equations with exponential nonlinearity and measure data
Published 2013-12-09Version 1
Let $\Omega$ be a bounded domain in ${\mathbb R}^N$ and $T>0$. We study the problem \begin{equation} (P)\left\{ \begin{array}{lll} u_t - \Delta u \pm g(u) &= \mu \quad &\text{in } Q_T:=\Omega \times (0,T) \\ \phantom{------,} u&=0 &\text{on } \partial \Omega \times (0,T)\\ \phantom{----,} u(.,0) &=\omega &\text{in } \Omega. \end{array} \right. \end{equation} where $\mu$ and $\omega$ are bounded Radon measures in $Q_T$ and $\Omega$ respectively and $g(u) \sim e^{a |u|^q} $ with $a>0$ and $q \geq 1$. We provide a sufficient condition in terms of fractional maximal potentials of $\mu$ and $\omega$ for solving (P).
Comments: 22 pages
Categories: math.AP
Keywords: exponential nonlinearity, measure data, parabolic equations, fractional maximal potentials, bounded radon measures
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2407.06783 [math.AP] (Published 2024-07-09)
Convergence rates for Poisson learning to a Poisson equation with measure data
arXiv:1507.06518 [math.AP] (Published 2015-07-23)
Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form
arXiv:0801.2445 [math.AP] (Published 2008-01-16)
Stable solutions for the bilaplacian with exponential nonlinearity