{ "id": "1312.2509", "version": "v1", "published": "2013-12-09T16:47:18.000Z", "updated": "2013-12-09T16:47:18.000Z", "title": "Parabolic equations with exponential nonlinearity and measure data", "authors": [ "Phuoc-Tai Nguyen" ], "comment": "22 pages", "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be a bounded domain in ${\\mathbb R}^N$ and $T>0$. We study the problem \\begin{equation} (P)\\left\\{ \\begin{array}{lll} u_t - \\Delta u \\pm g(u) &= \\mu \\quad &\\text{in } Q_T:=\\Omega \\times (0,T) \\\\ \\phantom{------,} u&=0 &\\text{on } \\partial \\Omega \\times (0,T)\\\\ \\phantom{----,} u(.,0) &=\\omega &\\text{in } \\Omega. \\end{array} \\right. \\end{equation} where $\\mu$ and $\\omega$ are bounded Radon measures in $Q_T$ and $\\Omega$ respectively and $g(u) \\sim e^{a |u|^q} $ with $a>0$ and $q \\geq 1$. We provide a sufficient condition in terms of fractional maximal potentials of $\\mu$ and $\\omega$ for solving (P).", "revisions": [ { "version": "v1", "updated": "2013-12-09T16:47:18.000Z" } ], "analyses": { "keywords": [ "exponential nonlinearity", "measure data", "parabolic equations", "fractional maximal potentials", "bounded radon measures" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2014.05.051", "journal": "Journal of Differential Equations", "year": 2014, "month": "Oct", "volume": 257, "number": 7, "pages": 2704 }, "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JDE...257.2704N" } } }