arXiv Analytics

Sign in

arXiv:1312.0553 [math.NT]AbstractReferencesReviewsResources

Shifted convolution sums and Burgess type subconvexity over number fields

P. Maga

Published 2013-12-02Version 1

Let $F$ be a number field and $\pi$ an irreducible cuspidal representation of $\mathrm{GL}_{2}(F)\backslash\mathrm{GL}_{2}(\mathbf{A})$ with unitary central character. Then the bound $$L(1/2,\pi\otimes\chi)\ll_{F,\pi,\chi_{\infty},\varepsilon} \mathcal{N}(\frak{q})^{3/8+\theta/4+\varepsilon}$$ holds for any Hecke character $\chi$ of conductor $\frak{q}$, where $\theta$ is any constant towards the Ramanujan-Petersson conjecture ($\theta=7/64$ is admissible). The proof is based on a spectral decomposition of shifted convolution sums.

Related articles: Most relevant | Search more
arXiv:math/0611135 [math.NT] (Published 2006-11-06)
On the Belyi degree of a number field
arXiv:1005.1156 [math.NT] (Published 2010-05-07, updated 2010-07-15)
A new computational approach to ideal theory in number fields
arXiv:math/0509088 [math.NT] (Published 2005-09-05)
Actions of Galois groups on invariants of number fields