{ "id": "1312.0553", "version": "v1", "published": "2013-12-02T19:18:01.000Z", "updated": "2013-12-02T19:18:01.000Z", "title": "Shifted convolution sums and Burgess type subconvexity over number fields", "authors": [ "P. Maga" ], "categories": [ "math.NT" ], "abstract": "Let $F$ be a number field and $\\pi$ an irreducible cuspidal representation of $\\mathrm{GL}_{2}(F)\\backslash\\mathrm{GL}_{2}(\\mathbf{A})$ with unitary central character. Then the bound $$L(1/2,\\pi\\otimes\\chi)\\ll_{F,\\pi,\\chi_{\\infty},\\varepsilon} \\mathcal{N}(\\frak{q})^{3/8+\\theta/4+\\varepsilon}$$ holds for any Hecke character $\\chi$ of conductor $\\frak{q}$, where $\\theta$ is any constant towards the Ramanujan-Petersson conjecture ($\\theta=7/64$ is admissible). The proof is based on a spectral decomposition of shifted convolution sums.", "revisions": [ { "version": "v1", "updated": "2013-12-02T19:18:01.000Z" } ], "analyses": { "subjects": [ "11F41", "11F70", "11M41" ], "keywords": [ "shifted convolution sums", "burgess type subconvexity", "number field", "unitary central character", "irreducible cuspidal representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.0553M" } } }