arXiv Analytics

Sign in

arXiv:1311.6364 [math.NT]AbstractReferencesReviewsResources

Quartic residues and sums involving $\binom{4k}{2k}$

Zhi-Hong Sun

Published 2013-11-25, updated 2013-12-02Version 2

Let $p$ be an odd prime and let $m\not\equiv 0\pmod p$ be a rational p-adic integer. In this paper we reveal the connection between quartic residues and the sum $\sum_{k=0}^{[p/4]}\binom{4k}{2k}\frac 1{m^k}$, where $[x]$ is the greatest integer not exceeding $x$. Let $q$ be a prime of the form $4k+1$ and so $q=a^2+b^2$ with $a,b\in\Bbb Z$. When $p\nmid ab(a^2-b^2)q$, we show that for $r=0,1,2,3$, $p^{\frac{q-1}4}\equiv (\frac ab)^r\pmod q$ if and only if $$\sum_{k=0}^{[p/4]}\binom{4k}{2k}\Big(\frac{a^2}{16q}\Big)^k\equiv (-1)^{\frac{p^2-1}8a+\frac{p-1}2\cdot \frac{q-1}4}\Big(\frac pq\Big) \Big(\frac ab\Big)^r\pmod p,$$ where $(\frac pq)$ is the Legendre symbol. We also establish congruences for $\sum_{k=0}^{[p/4]}\binom{4k}{2k}\frac 1{m^k}\pmod p$ in the cases $m=17,18,20,32,52,80,272$.

Comments: Section 3 is new
Categories: math.NT
Subjects: 11A07, 11A15, 11B39, 11B65, 11E25
Related articles: Most relevant | Search more
arXiv:2409.08213 [math.NT] (Published 2024-09-12)
On determinants involving $(\frac{j+k}p)\pm(\frac{j-k}p)$
arXiv:1310.6721 [math.NT] (Published 2013-10-24, updated 2013-11-20)
Cubic congruences and sums involving $\binom{3k}k$
arXiv:2008.10502 [math.NT] (Published 2020-08-24)
Legendre Symbol of $\prod f(i,j) $ over $ 0<i<j<p/2, \ p\nmid f(i,j) $