{ "id": "1311.6364", "version": "v2", "published": "2013-11-25T16:59:35.000Z", "updated": "2013-12-02T14:51:01.000Z", "title": "Quartic residues and sums involving $\\binom{4k}{2k}$", "authors": [ "Zhi-Hong Sun" ], "comment": "Section 3 is new", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime and let $m\\not\\equiv 0\\pmod p$ be a rational p-adic integer. In this paper we reveal the connection between quartic residues and the sum $\\sum_{k=0}^{[p/4]}\\binom{4k}{2k}\\frac 1{m^k}$, where $[x]$ is the greatest integer not exceeding $x$. Let $q$ be a prime of the form $4k+1$ and so $q=a^2+b^2$ with $a,b\\in\\Bbb Z$. When $p\\nmid ab(a^2-b^2)q$, we show that for $r=0,1,2,3$, $p^{\\frac{q-1}4}\\equiv (\\frac ab)^r\\pmod q$ if and only if $$\\sum_{k=0}^{[p/4]}\\binom{4k}{2k}\\Big(\\frac{a^2}{16q}\\Big)^k\\equiv (-1)^{\\frac{p^2-1}8a+\\frac{p-1}2\\cdot \\frac{q-1}4}\\Big(\\frac pq\\Big) \\Big(\\frac ab\\Big)^r\\pmod p,$$ where $(\\frac pq)$ is the Legendre symbol. We also establish congruences for $\\sum_{k=0}^{[p/4]}\\binom{4k}{2k}\\frac 1{m^k}\\pmod p$ in the cases $m=17,18,20,32,52,80,272$.", "revisions": [ { "version": "v2", "updated": "2013-12-02T14:51:01.000Z" } ], "analyses": { "subjects": [ "11A07", "11A15", "11B39", "11B65", "11E25" ], "keywords": [ "quartic residues", "rational p-adic integer", "legendre symbol", "odd prime", "greatest integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6364S" } } }