arXiv Analytics

Sign in

arXiv:1311.5121 [math.NA]AbstractReferencesReviewsResources

Finite element approximation of the $p(\cdot)$-Laplacian

D. Breit, L. Diening, S. Schwarzacher

Published 2013-11-20, updated 2014-08-12Version 2

We study a~priori estimates for the Dirichlet problem of the $p(\cdot)$-Laplacian, \[-\mathrm{div}(|\nabla v|^{p(\cdot)-2} \nabla v) = f. \] We show that the gradients of the finite element approximation with zero boundary data converges with rate $O(h^\alpha)$ if the exponent $p$ is $\alpha$-H\"{o}lder continuous. The error of the gradients is measured in the so-called quasi-norm, i.e. we measure the $L^2$-error of $|\nabla v|^{\frac{p-2}{2}} \nabla v$.

Related articles: Most relevant | Search more
arXiv:1512.09091 [math.NA] (Published 2015-12-30)
Finite element approximation of the Isaacs equation
arXiv:1204.2145 [math.NA] (Published 2012-04-10, updated 2013-10-28)
Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology
arXiv:2208.11892 [math.NA] (Published 2022-08-25)
$L^p$-resolvent estimate for finite element approximation of the Stokes operator