{ "id": "1311.5121", "version": "v2", "published": "2013-11-20T16:23:18.000Z", "updated": "2014-08-12T12:38:19.000Z", "title": "Finite element approximation of the $p(\\cdot)$-Laplacian", "authors": [ "D. Breit", "L. Diening", "S. Schwarzacher" ], "categories": [ "math.NA", "math.AP" ], "abstract": "We study a~priori estimates for the Dirichlet problem of the $p(\\cdot)$-Laplacian, \\[-\\mathrm{div}(|\\nabla v|^{p(\\cdot)-2} \\nabla v) = f. \\] We show that the gradients of the finite element approximation with zero boundary data converges with rate $O(h^\\alpha)$ if the exponent $p$ is $\\alpha$-H\\\"{o}lder continuous. The error of the gradients is measured in the so-called quasi-norm, i.e. we measure the $L^2$-error of $|\\nabla v|^{\\frac{p-2}{2}} \\nabla v$.", "revisions": [ { "version": "v2", "updated": "2014-08-12T12:38:19.000Z" } ], "analyses": { "subjects": [ "65N15", "65N30", "65D05", "35J60", "46E30" ], "keywords": [ "finite element approximation", "zero boundary data converges", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.5121B" } } }