arXiv:1311.2016 [math.PR]AbstractReferencesReviewsResources
Local semicircle law with imprimitive variance matrix
Oskari Ajanki, Laszlo Erdos, Torben Krüger
Published 2013-11-08Version 1
We extend the proof of the local semicircle law for generalized Wigner matrices given in [4] to the case when the matrix of variances has an eigenvalue $ -1 $. In particular, this result provides a short proof of the optimal local Marchenko-Pastur law at the hard edge (i.e. around zero) for sample covariance matrices $ \boldsymbol{\mathrm{X}}^\ast \boldsymbol{\mathrm{X}} $, where the variances of the entries of $ \boldsymbol{\mathrm{X}} $ may vary.
Categories: math.PR
Related articles: Most relevant | Search more
On the principal components of sample covariance matrices
arXiv:1908.07444 [math.PR] (Published 2019-08-17)
Extremal eigenvalues of sample covariance matrices with general population
arXiv:1601.04055 [math.PR] (Published 2016-01-15)
Lectures on the local semicircle law for Wigner matrices