{ "id": "1311.2016", "version": "v1", "published": "2013-11-08T16:37:57.000Z", "updated": "2013-11-08T16:37:57.000Z", "title": "Local semicircle law with imprimitive variance matrix", "authors": [ "Oskari Ajanki", "Laszlo Erdos", "Torben Krüger" ], "categories": [ "math.PR" ], "abstract": "We extend the proof of the local semicircle law for generalized Wigner matrices given in [4] to the case when the matrix of variances has an eigenvalue $ -1 $. In particular, this result provides a short proof of the optimal local Marchenko-Pastur law at the hard edge (i.e. around zero) for sample covariance matrices $ \\boldsymbol{\\mathrm{X}}^\\ast \\boldsymbol{\\mathrm{X}} $, where the variances of the entries of $ \\boldsymbol{\\mathrm{X}} $ may vary.", "revisions": [ { "version": "v1", "updated": "2013-11-08T16:37:57.000Z" } ], "analyses": { "subjects": [ "15B52", "60B20" ], "keywords": [ "local semicircle law", "imprimitive variance matrix", "optimal local marchenko-pastur law", "sample covariance matrices", "short proof" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.2016A" } } }