arXiv:1311.1560 [math.NT]AbstractReferencesReviewsResources
Values of binary quadratic forms at integer points and Schmidt games
Published 2013-11-07Version 1
We prove that for any countable set $A$ of real numbers, the set of binary indefinite quadratic forms $Q$ such that the closure of $Q(\mathbb{Z}^2)$ is disjoint from $A$ has full Hausdorff dimension.
Comments: 13 pages
Categories: math.NT
Related articles: Most relevant | Search more
On Rogers-Ramanujan functions, binary quadratic forms and eta-quotients
arXiv:1708.04877 [math.NT] (Published 2017-08-16)
Numbers Represented by a Finite Set of Binary Quadratic Forms
arXiv:1711.00230 [math.NT] (Published 2017-11-01)
On the $Γ$-equivalence of binary quadratic forms