{ "id": "1311.1560", "version": "v1", "published": "2013-11-07T01:36:39.000Z", "updated": "2013-11-07T01:36:39.000Z", "title": "Values of binary quadratic forms at integer points and Schmidt games", "authors": [ "Dmitry Kleinbock", "Barak Weiss" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "We prove that for any countable set $A$ of real numbers, the set of binary indefinite quadratic forms $Q$ such that the closure of $Q(\\mathbb{Z}^2)$ is disjoint from $A$ has full Hausdorff dimension.", "revisions": [ { "version": "v1", "updated": "2013-11-07T01:36:39.000Z" } ], "analyses": { "subjects": [ "11E16", "37A45", "37D40" ], "keywords": [ "binary quadratic forms", "integer points", "schmidt games", "binary indefinite quadratic forms", "full hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.1560K" } } }