arXiv:1311.0155 [math.FA]AbstractReferencesReviewsResources
Compactness of higher-order Sobolev embeddings
Published 2013-11-01Version 1
We study higher-order compact Sobolev embeddings on a domain $\Omega \subseteq \mathbb R^n$ endowed with a probability measure $\nu$ and satisfying certain isoperimetric inequality. Given $m\in \mathbb N$, we present a condition on a pair of rearrangement-invariant spaces $X(\Omega,\nu)$ and $Y(\Omega,\nu)$ which suffices to guarantee a compact embedding of the Sobolev space $V^mX(\Omega,\nu)$ into $Y(\Omega,\nu)$. The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of $(\Omega,\nu)$. We then apply this result to the characterization of higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.