{ "id": "1311.0155", "version": "v1", "published": "2013-11-01T12:01:28.000Z", "updated": "2013-11-01T12:01:28.000Z", "title": "Compactness of higher-order Sobolev embeddings", "authors": [ "Lenka Slavíková" ], "categories": [ "math.FA" ], "abstract": "We study higher-order compact Sobolev embeddings on a domain $\\Omega \\subseteq \\mathbb R^n$ endowed with a probability measure $\\nu$ and satisfying certain isoperimetric inequality. Given $m\\in \\mathbb N$, we present a condition on a pair of rearrangement-invariant spaces $X(\\Omega,\\nu)$ and $Y(\\Omega,\\nu)$ which suffices to guarantee a compact embedding of the Sobolev space $V^mX(\\Omega,\\nu)$ into $Y(\\Omega,\\nu)$. The condition is given in terms of compactness of certain one-dimensional operator depending on the isoperimetric function of $(\\Omega,\\nu)$. We then apply this result to the characterization of higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, whose standard example is the Gauss space.", "revisions": [ { "version": "v1", "updated": "2013-11-01T12:01:28.000Z" } ], "analyses": { "subjects": [ "46E35", "46E30" ], "keywords": [ "higher-order sobolev embeddings", "compactness", "study higher-order compact sobolev embeddings", "product probability spaces", "concrete measure spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.0155S" } } }