arXiv Analytics

Sign in

arXiv:1310.6831 [math.NA]AbstractReferencesReviewsResources

The discrete analogue of the differential operator $\frac{d^{2m}}{d x^{2m}} + 2ω^2\frac{d^{2m-2}}{d x^{2m-2}} + ω^4\frac{d^{2m-4}}{d x^{2m-4}}$

A. R. Hayotov

Published 2013-10-25Version 1

In the present paper we construct the discrete analogue $D_m(h\beta)$ of the differential operator $\frac{d^{2m}}{d x^{2m}} + 2\omega^2\frac{d^{2m-2}}{d x^{2m-2}} + \omega^4\frac{d^{2m-4}}{d x^{2m-4}}$. The discrete analogue $D_m(h\beta)$ plays the main role in construction of optimal quadrature formulas and interpolation splines minimizing the semi-norm in the $K_2(P_m)$ Hilbert space.

Related articles: Most relevant | Search more
arXiv:1212.3672 [math.NA] (Published 2012-12-15)
Construction of discrete analogue of the differential operator $\frac{d^4}{dx^4}+2\frac{d^2}{dx^2}+1$ and its properties
arXiv:0810.5423 [math.NA] (Published 2008-10-30)
Properties of Discrete Analogue of the Differential Operator $\frac{d^{2m}}{dx^{2m}}-\frac{d^{2m-2}}{dx^{2m-2}}$
arXiv:1410.8423 [math.NA] (Published 2014-10-30)
Optimal quadrature formulas with derivatives in Sobolev space