{ "id": "1310.6831", "version": "v1", "published": "2013-10-25T06:43:29.000Z", "updated": "2013-10-25T06:43:29.000Z", "title": "The discrete analogue of the differential operator $\\frac{d^{2m}}{d x^{2m}} + 2ω^2\\frac{d^{2m-2}}{d x^{2m-2}} + ω^4\\frac{d^{2m-4}}{d x^{2m-4}}$", "authors": [ "A. R. Hayotov" ], "categories": [ "math.NA" ], "abstract": "In the present paper we construct the discrete analogue $D_m(h\\beta)$ of the differential operator $\\frac{d^{2m}}{d x^{2m}} + 2\\omega^2\\frac{d^{2m-2}}{d x^{2m-2}} + \\omega^4\\frac{d^{2m-4}}{d x^{2m-4}}$. The discrete analogue $D_m(h\\beta)$ plays the main role in construction of optimal quadrature formulas and interpolation splines minimizing the semi-norm in the $K_2(P_m)$ Hilbert space.", "revisions": [ { "version": "v1", "updated": "2013-10-25T06:43:29.000Z" } ], "analyses": { "keywords": [ "discrete analogue", "differential operator", "optimal quadrature formulas", "main role", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6831H" } } }