arXiv Analytics

Sign in

arXiv:1310.6633 [math.AP]AbstractReferencesReviewsResources

Existence of mild solutions for a system of partial differential equations with time-dependent generators

Amanda del Carmen Andrade-González, José Villa-Morales

Published 2013-10-24Version 1

We give sufficient conditions for global existence of positive mild solutions for the weak coupled system: \begin{eqnarray*} \frac{\partial u_{1}}{\partial t} &=&\rho_{1}t^{\rho_{1}-1}\Delta_{\alpha_{1}}u_{1}+t^{\sigma_{1}}u_{2}^{\beta_{1}},\ \ u_{1}\left(0\right) =\varphi_{1}, \\ \frac{\partial u_{2}}{\partial t} &=&\rho_{2}t^{\rho_{2}-1}\Delta_{\alpha_{2}}u_{2}+t^{\sigma_{2}}u_{1}^{\beta_{2}},\ \ u_{2}\left(0\right) =\varphi_{2}, \end{eqnarray*} where $\Delta_{\alpha_{i}}$ is a fractional Laplacian, $0<\alpha_{i}\leq 2,\ \beta_{i}>1,\ \rho_{i}>0,\ \sigma_{i}>-1\ $are constants and the initial data $\varphi_{i}$ are positive, bounded and integrable functions.

Related articles: Most relevant | Search more
arXiv:math/0603656 [math.AP] (Published 2006-03-28)
Global existence versus blow up for some models of interacting particles
arXiv:1004.4021 [math.AP] (Published 2010-04-22)
Blow-up versus global existence of solutions to aggregation equations
arXiv:math/0602010 [math.AP] (Published 2006-02-01)
Global existence and causality for a transmission problem with a repulsive nonlinearity