{ "id": "1310.6633", "version": "v1", "published": "2013-10-24T14:31:21.000Z", "updated": "2013-10-24T14:31:21.000Z", "title": "Existence of mild solutions for a system of partial differential equations with time-dependent generators", "authors": [ "Amanda del Carmen Andrade-González", "José Villa-Morales" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "We give sufficient conditions for global existence of positive mild solutions for the weak coupled system: \\begin{eqnarray*} \\frac{\\partial u_{1}}{\\partial t} &=&\\rho_{1}t^{\\rho_{1}-1}\\Delta_{\\alpha_{1}}u_{1}+t^{\\sigma_{1}}u_{2}^{\\beta_{1}},\\ \\ u_{1}\\left(0\\right) =\\varphi_{1}, \\\\ \\frac{\\partial u_{2}}{\\partial t} &=&\\rho_{2}t^{\\rho_{2}-1}\\Delta_{\\alpha_{2}}u_{2}+t^{\\sigma_{2}}u_{1}^{\\beta_{2}},\\ \\ u_{2}\\left(0\\right) =\\varphi_{2}, \\end{eqnarray*} where $\\Delta_{\\alpha_{i}}$ is a fractional Laplacian, $0<\\alpha_{i}\\leq 2,\\ \\beta_{i}>1,\\ \\rho_{i}>0,\\ \\sigma_{i}>-1\\ $are constants and the initial data $\\varphi_{i}$ are positive, bounded and integrable functions.", "revisions": [ { "version": "v1", "updated": "2013-10-24T14:31:21.000Z" } ], "analyses": { "subjects": [ "35K55", "35K45", "35B40", "35K20" ], "keywords": [ "partial differential equations", "time-dependent generators", "sufficient conditions", "global existence", "positive mild solutions" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.6633A" } } }