arXiv:1310.4435 [math.AP]AbstractReferencesReviewsResources
Regularity of minimizers of autonomous convex variational integrals
Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli
Published 2013-10-16Version 1
We establish local higher integrability and differentiability results for minimizers of variational integrals $$ \mathfrak{F}(v,\Omega) = \int_{\Omega} /! F(Dv(x)) \, dx $$ over $W^{1,p}$--Sobolev mappings $u \colon \Omega \subset {\mathbb R}^n \to {\mathbb R}^N$ satisfying a Dirichlet boundary condition. The integrands $F$ are assumed to be autonomous, convex and of $(p,q)$ growth, but are otherwise not subjected to any further structure conditions, and we consider exponents in the range $1<p \leq q < p^{\ast}$, where $p^{\ast}$ denotes the Sobolev conjugate exponent of $p$.
Categories: math.AP
Keywords: autonomous convex variational integrals, minimizers, regularity, establish local higher integrability, sobolev conjugate exponent
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1902.01495 [math.AP] (Published 2019-02-04)
Existence and regularity of minimizers for nonlocal energy functionals
arXiv:1511.01039 [math.AP] (Published 2015-11-03)
Regularity and the Behavior of Eigenvalues for Minimizers of a Constrained $Q$-tensor Energy for Liquid Crystals
arXiv:2209.01565 [math.AP] (Published 2022-09-04)
Regularity of almost minimizers for the parabolic thin obstacle problem