{ "id": "1310.4435", "version": "v1", "published": "2013-10-16T16:20:26.000Z", "updated": "2013-10-16T16:20:26.000Z", "title": "Regularity of minimizers of autonomous convex variational integrals", "authors": [ "Menita Carozza", "Jan Kristensen", "Antonia Passarelli di Napoli" ], "doi": "10.2422/2036-2145.201208_005", "categories": [ "math.AP" ], "abstract": "We establish local higher integrability and differentiability results for minimizers of variational integrals $$ \\mathfrak{F}(v,\\Omega) = \\int_{\\Omega} /! F(Dv(x)) \\, dx $$ over $W^{1,p}$--Sobolev mappings $u \\colon \\Omega \\subset {\\mathbb R}^n \\to {\\mathbb R}^N$ satisfying a Dirichlet boundary condition. The integrands $F$ are assumed to be autonomous, convex and of $(p,q)$ growth, but are otherwise not subjected to any further structure conditions, and we consider exponents in the range $1