arXiv Analytics

Sign in

arXiv:1310.2141 [math.AP]AbstractReferencesReviewsResources

Analyticity for the (generalized) Navier-Stokes equations with rough initial data

Chunyan Huang, Baoxiang Wang

Published 2013-10-08, updated 2013-10-31Version 2

We study the Cauchy problem for the (generalized) incompressible Navier-Stokes equations \begin{align} u_t+(-\Delta)^{\alpha}u+u\cdot \nabla u +\nabla p=0, \ \ {\rm div} u=0, \ \ u(0,x)= u_0. \nonumber \end{align} We show the analyticity of the local solutions of the Navier-Stokes equation ($\alpha=1$) with any initial data in critical Besov spaces $\dot{B}^{n/p-1}_{p,q}(\mathbb{R}^n)$ with $1< p<\infty, \ 1\le q\le \infty $ and the solution is global if $u_0$ is sufficiently small in $\dot{B}^{n/p-1}_{p,q}(\mathbb{R}^n)$. In the case $p=\infty$, the analyticity for the local solutions of the Navier-Stokes equation ($\alpha=1$) with any initial data in modulation space $M^{-1}_{\infty,1}(\mathbb{R}^n)$ is obtained. We prove the global well-posedness for a fractional Navier-stokes equation ($\alpha=1/2$) with small data in critical Besov spaces $\dot{B}^{n/p}_{p,1}(\mathbb{R}^n) \ (1\leq p\leq\infty)$ and show the analyticity of solutions with small initial data either in $\dot{B}^{n/p}_{p,1}(\mathbb{R}^n) \ (1\leq p<\infty)$ or in $\dot{B}^0_{\infty,1} (\mathbb{R}^n)\cap {M}^0_{\infty,1}(\mathbb{R}^n)$. Similar results also hold for all $\alpha\in (1/2,1)$.

Comments: 31 pages
Categories: math.AP
Subjects: 35Q30, 35K55
Related articles: Most relevant | Search more
arXiv:1403.2461 [math.AP] (Published 2014-03-11, updated 2021-08-23)
Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot B^{-1}_{\infty,q}$
arXiv:0805.3465 [math.AP] (Published 2008-05-22, updated 2008-10-24)
Global well-posedness of the critical Burgers equation in critical Besov spaces
arXiv:2111.10182 [math.AP] (Published 2021-11-19, updated 2023-07-07)
Local solutions for nonhomogeneous Navier-Stokes equations with large flux