{ "id": "1310.2141", "version": "v2", "published": "2013-10-08T14:09:50.000Z", "updated": "2013-10-31T00:47:50.000Z", "title": "Analyticity for the (generalized) Navier-Stokes equations with rough initial data", "authors": [ "Chunyan Huang", "Baoxiang Wang" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "We study the Cauchy problem for the (generalized) incompressible Navier-Stokes equations \\begin{align} u_t+(-\\Delta)^{\\alpha}u+u\\cdot \\nabla u +\\nabla p=0, \\ \\ {\\rm div} u=0, \\ \\ u(0,x)= u_0. \\nonumber \\end{align} We show the analyticity of the local solutions of the Navier-Stokes equation ($\\alpha=1$) with any initial data in critical Besov spaces $\\dot{B}^{n/p-1}_{p,q}(\\mathbb{R}^n)$ with $1< p<\\infty, \\ 1\\le q\\le \\infty $ and the solution is global if $u_0$ is sufficiently small in $\\dot{B}^{n/p-1}_{p,q}(\\mathbb{R}^n)$. In the case $p=\\infty$, the analyticity for the local solutions of the Navier-Stokes equation ($\\alpha=1$) with any initial data in modulation space $M^{-1}_{\\infty,1}(\\mathbb{R}^n)$ is obtained. We prove the global well-posedness for a fractional Navier-stokes equation ($\\alpha=1/2$) with small data in critical Besov spaces $\\dot{B}^{n/p}_{p,1}(\\mathbb{R}^n) \\ (1\\leq p\\leq\\infty)$ and show the analyticity of solutions with small initial data either in $\\dot{B}^{n/p}_{p,1}(\\mathbb{R}^n) \\ (1\\leq p<\\infty)$ or in $\\dot{B}^0_{\\infty,1} (\\mathbb{R}^n)\\cap {M}^0_{\\infty,1}(\\mathbb{R}^n)$. Similar results also hold for all $\\alpha\\in (1/2,1)$.", "revisions": [ { "version": "v2", "updated": "2013-10-31T00:47:50.000Z" } ], "analyses": { "subjects": [ "35Q30", "35K55" ], "keywords": [ "rough initial data", "analyticity", "critical besov spaces", "local solutions" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.2141H" } } }