arXiv Analytics

Sign in

arXiv:1309.7544 [math.RT]AbstractReferencesReviewsResources

The irreducible modules for the derivations of the rational quantum torus

S. Eswara Rao, Punita Batra, Sachin S. Sharma

Published 2013-09-29, updated 2015-01-28Version 3

Let $\bbcq$ be the quantum torus associated with the $d \times d$ matrix $q = (q_{ij})$, $q_{ii} = 1$, $q_{ij}^{-1} = q_{ji}$, $q_{ij}$ are roots of unity, for all $1 \leq i, j \leq d.$ Let $\Der(\bbcq)$ be the Lie algebra of all the derivations of $\bbcq$. In this paper we define the Lie algebra $\Der(\bbcq) \ltimes \bbcq$ and classify its modules which are irreducible and have finite dimensional weight spaces. These modules under certain conditions turn out to be of the form $V \otimes \bbcq$, where $V$ is a finite dimensional irreducible $gl_d$-module.

Comments: Revised version
Journal: J.Algebra 410(2014), 333-342
Categories: math.RT
Subjects: 17B65, 17B66, 17B68
Related articles: Most relevant | Search more
arXiv:2202.07985 [math.RT] (Published 2022-02-16)
Irreducible Integrable Modules for the full Toroidal Lie Algebras co-ordinated by Rational Quantum Torus
arXiv:2005.07381 [math.RT] (Published 2020-05-15)
Integrable Modules For Graded Lie Tori With Finite Dimensional Weight Spaces
arXiv:1604.01622 [math.RT] (Published 2016-04-06)
Irreducible modules for equivariant map superalgebras and their extensions