{ "id": "1309.7544", "version": "v3", "published": "2013-09-29T07:01:10.000Z", "updated": "2015-01-28T12:10:12.000Z", "title": "The irreducible modules for the derivations of the rational quantum torus", "authors": [ "S. Eswara Rao", "Punita Batra", "Sachin S. Sharma" ], "comment": "Revised version", "journal": "J.Algebra 410(2014), 333-342", "doi": "10.1016/j.jalgebra.2014.03.024", "categories": [ "math.RT" ], "abstract": "Let $\\bbcq$ be the quantum torus associated with the $d \\times d$ matrix $q = (q_{ij})$, $q_{ii} = 1$, $q_{ij}^{-1} = q_{ji}$, $q_{ij}$ are roots of unity, for all $1 \\leq i, j \\leq d.$ Let $\\Der(\\bbcq)$ be the Lie algebra of all the derivations of $\\bbcq$. In this paper we define the Lie algebra $\\Der(\\bbcq) \\ltimes \\bbcq$ and classify its modules which are irreducible and have finite dimensional weight spaces. These modules under certain conditions turn out to be of the form $V \\otimes \\bbcq$, where $V$ is a finite dimensional irreducible $gl_d$-module.", "revisions": [ { "version": "v2", "updated": "2013-10-01T06:03:21.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2015-01-28T12:10:12.000Z" } ], "analyses": { "subjects": [ "17B65", "17B66", "17B68" ], "keywords": [ "rational quantum torus", "irreducible modules", "derivations", "finite dimensional weight spaces", "lie algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.7544E" } } }