arXiv Analytics

Sign in

arXiv:1309.1707 [math.PR]AbstractReferencesReviewsResources

A Gaussian correlation inequality for convex sets

Michael R. Tehranchi

Published 2013-09-06, updated 2015-12-31Version 2

A Gaussian correlation inequality is proven which generalises results of Schechtman, Schlumprecht \& Zinn , Li and Shao. One implication of this inequality is that, for the standard Gaussian measure $\gamma$ on $R^n$, the inequality $$ |\sin(\alpha + \beta)|^n \gamma( \sin \alpha \ A) \gamma( \sin \beta \ B) \le \gamma( \sin(\alpha+\beta) A \cap B) \gamma\big( \sin \alpha \sin \beta \ (A+B) \big) $$ holds for all symmetric convex sets $A, B \subseteq R^n $ and real $\alpha, \beta$. Furthermore, connections to the Gaussian correlation conjecture are explored.

Related articles: Most relevant | Search more
arXiv:1012.0676 [math.PR] (Published 2010-12-03, updated 2013-03-02)
The Gaussian Correlation Inequality for Symmetric Convex Sets
arXiv:0811.0488 [math.PR] (Published 2008-11-04, updated 2008-11-07)
Gaussian Correlation Conjecture for Symmetric Convex Sets
arXiv:1512.08776 [math.PR] (Published 2015-12-29)
Royen's proof of the Gaussian correlation inequality