{ "id": "1309.1707", "version": "v2", "published": "2013-09-06T17:48:58.000Z", "updated": "2015-12-31T11:20:26.000Z", "title": "A Gaussian correlation inequality for convex sets", "authors": [ "Michael R. Tehranchi" ], "categories": [ "math.PR" ], "abstract": "A Gaussian correlation inequality is proven which generalises results of Schechtman, Schlumprecht \\& Zinn , Li and Shao. One implication of this inequality is that, for the standard Gaussian measure $\\gamma$ on $R^n$, the inequality $$ |\\sin(\\alpha + \\beta)|^n \\gamma( \\sin \\alpha \\ A) \\gamma( \\sin \\beta \\ B) \\le \\gamma( \\sin(\\alpha+\\beta) A \\cap B) \\gamma\\big( \\sin \\alpha \\sin \\beta \\ (A+B) \\big) $$ holds for all symmetric convex sets $A, B \\subseteq R^n $ and real $\\alpha, \\beta$. Furthermore, connections to the Gaussian correlation conjecture are explored.", "revisions": [ { "version": "v1", "updated": "2013-09-06T17:48:58.000Z", "abstract": "A Gaussian correlation inequality is proven which generalises results of Schechtman, Schlumprecht & Zinn, Li and Shao. Letting $\\gamma$ be the standard Gaussian measure on $R^n$, concrete implications of this inequality are that the inequality $\\gamma(A) \\gamma(B) \\le (4/3)^{n/2} \\gamma(A \\cap B)$ holds for all symmetric convex sets $A, B$, and that $\\gamma(A) \\gamma(B) \\le \\gamma(A \\cap B)$ holds for all symmetric convex subsets $A, B$ of the Euclidean unit ball of radius $0.374 \\sqrt{n}$.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-12-31T11:20:26.000Z" } ], "analyses": { "subjects": [ "60E15", "28C20" ], "keywords": [ "gaussian correlation inequality", "symmetric convex subsets", "symmetric convex sets", "standard gaussian measure", "euclidean unit ball" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1707T" } } }