arXiv Analytics

Sign in

arXiv:1308.6739 [math.CO]AbstractReferencesReviewsResources

Beyond Ohba's Conjecture: A bound on the choice number of $k$-chromatic graphs with $n$ vertices

Jonathan A. Noel, Douglas B. West, Hehui Wu, Xuding Zhu

Published 2013-08-30, updated 2014-08-27Version 3

Let $\text{ch}(G)$ denote the choice number of a graph $G$ (also called "list chromatic number" or "choosability" of $G$). Noel, Reed, and Wu proved the conjecture of Ohba that $\text{ch}(G)=\chi(G)$ when $|V(G)|\le 2\chi(G)+1$. We extend this to a general upper bound: $\text{ch}(G)\le \max\{\chi(G),\lceil({|V(G)|+\chi(G)-1})/{3}\rceil\}$. Our result is sharp for $|V(G)|\le 3\chi(G)$ using Ohba's examples, and it improves the best-known upper bound for $\text{ch}(K_{4,\dots,4})$.

Comments: 14 pages
Categories: math.CO, cs.DM
Subjects: 05C15
Related articles: Most relevant | Search more
arXiv:2102.06993 [math.CO] (Published 2021-02-13)
The choice number versus the chromatic number for graphs embeddable on orientable surfaces
arXiv:0712.0920 [math.CO] (Published 2007-12-06)
Choice Number and Energy of Graphs
arXiv:2403.11888 [math.CO] (Published 2024-03-18, updated 2024-07-04)
Paintability of $r$-chromatic graphs