{ "id": "1308.6739", "version": "v3", "published": "2013-08-30T13:32:21.000Z", "updated": "2014-08-27T10:29:58.000Z", "title": "Beyond Ohba's Conjecture: A bound on the choice number of $k$-chromatic graphs with $n$ vertices", "authors": [ "Jonathan A. Noel", "Douglas B. West", "Hehui Wu", "Xuding Zhu" ], "comment": "14 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "Let $\\text{ch}(G)$ denote the choice number of a graph $G$ (also called \"list chromatic number\" or \"choosability\" of $G$). Noel, Reed, and Wu proved the conjecture of Ohba that $\\text{ch}(G)=\\chi(G)$ when $|V(G)|\\le 2\\chi(G)+1$. We extend this to a general upper bound: $\\text{ch}(G)\\le \\max\\{\\chi(G),\\lceil({|V(G)|+\\chi(G)-1})/{3}\\rceil\\}$. Our result is sharp for $|V(G)|\\le 3\\chi(G)$ using Ohba's examples, and it improves the best-known upper bound for $\\text{ch}(K_{4,\\dots,4})$.", "revisions": [ { "version": "v2", "updated": "2013-10-01T18:48:22.000Z", "abstract": "Noel, Reed, and Wu proved the conjecture of Ohba stating that the choice number of a graph $G$ equals its chromatic number when $|V(G)|\\le 2\\chi(G)+1$. We extend this to a general upper bound: \\[\\ch(G)\\le \\max\\left\\{\\chi(G),\\left\\lceil\\frac{|V(G)|+\\chi(G)-1}{3}\\right\\rceil\\right\\}.\\] For $|V(G)|\\le 3\\chi(G)$, Ohba provided examples where equality holds.", "comment": "13 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-08-27T10:29:58.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "choice number", "ohbas conjecture", "chromatic graphs", "general upper bound", "chromatic number" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.6739N" } } }