arXiv Analytics

Sign in

arXiv:1308.3030 [math.RT]AbstractReferencesReviewsResources

Irreducible Characters of Kac-Moody Lie superalgebras

Shun-Jen Cheng, Jae-Hoon Kwon, Weiqiang Wang

Published 2013-08-14, updated 2014-07-28Version 2

Generalizing the super duality formalism for finite-dimensional Lie superalgebras of type $ABCD$, we establish an equivalence between parabolic BGG categories of a Kac-Moody Lie superalgebra and a Kac-Moody Lie algebra. The characters for a large family of irreducible highest weight modules over a symmetrizable Kac-Moody Lie superalgebra are then given in terms of Kazhdan-Lusztig polynomials for the first time. We formulate a notion of integrable modules over a symmetrizable Kac-Moody Lie superalgebra via super duality, and show that these integrable modules form a semisimple tensor subcategory, whose Littlewood-Richardson tensor product multiplicities coincide with those in the Kac-Moody algebra setting.

Related articles: Most relevant | Search more
arXiv:1202.4336 [math.RT] (Published 2012-02-20)
Irreducible Characters for Algebraic Groups in Characteristic Three
arXiv:math/0311207 [math.RT] (Published 2003-11-13, updated 2007-10-20)
Integrable modules for affine Lie superalgebras
arXiv:1605.02859 [math.RT] (Published 2016-05-10)
The irreducible characters of the alternating Hecke algebras