{ "id": "1308.3030", "version": "v2", "published": "2013-08-14T04:44:38.000Z", "updated": "2014-07-28T04:29:10.000Z", "title": "Irreducible Characters of Kac-Moody Lie superalgebras", "authors": [ "Shun-Jen Cheng", "Jae-Hoon Kwon", "Weiqiang Wang" ], "comment": "28 pages", "categories": [ "math.RT" ], "abstract": "Generalizing the super duality formalism for finite-dimensional Lie superalgebras of type $ABCD$, we establish an equivalence between parabolic BGG categories of a Kac-Moody Lie superalgebra and a Kac-Moody Lie algebra. The characters for a large family of irreducible highest weight modules over a symmetrizable Kac-Moody Lie superalgebra are then given in terms of Kazhdan-Lusztig polynomials for the first time. We formulate a notion of integrable modules over a symmetrizable Kac-Moody Lie superalgebra via super duality, and show that these integrable modules form a semisimple tensor subcategory, whose Littlewood-Richardson tensor product multiplicities coincide with those in the Kac-Moody algebra setting.", "revisions": [ { "version": "v2", "updated": "2014-07-28T04:29:10.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "irreducible characters", "symmetrizable kac-moody lie superalgebra", "littlewood-richardson tensor product multiplicities coincide", "semisimple tensor subcategory", "integrable modules" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.3030C" } } }