arXiv Analytics

Sign in

arXiv:1307.6469 [math.AG]AbstractReferencesReviewsResources

Invariants and conjugacy classes of triangular polynomial maps

Stefan Maubach

Published 2013-07-24Version 1

In this article, we classify invariants and conjugacy classes of triangular polynomial maps. We make these classifications in dimension 2 over domains containing $\Q$, dimension 2 over fields of characteristic $p$, and dimension 3 over fields of characteristic zero. We discuss the generic characteristic 0 case. We determine the invariants and conjugacy classes of strictly triangular maps of maximal order in all dimensions over fields of characteristic $p$. They turn out to be equivalent to a map of the form $(x_1+f_1,\ldots,x_n+f_n)$ where $f_i\in x_n^{p-1}k[x_{i+1}^p,\ldots,x_n^p]$ if $1\leq i\leq n-1$ and $f_n\in k^*$.

Related articles: Most relevant | Search more
arXiv:2011.11046 [math.AG] (Published 2020-11-22)
Conjugacy classes of groups of prime order in $\mathrm{PGL}_{k+1}(\mathbb{C})$
arXiv:1606.09625 [math.AG] (Published 2016-06-30)
Conjugacy classes of commuting nilpotents
arXiv:math/0107178 [math.AG] (Published 2001-07-24)
Classes of wiring diagrams and their invariants