{ "id": "1307.6469", "version": "v1", "published": "2013-07-24T15:54:20.000Z", "updated": "2013-07-24T15:54:20.000Z", "title": "Invariants and conjugacy classes of triangular polynomial maps", "authors": [ "Stefan Maubach" ], "categories": [ "math.AG", "math.AC", "math.GR" ], "abstract": "In this article, we classify invariants and conjugacy classes of triangular polynomial maps. We make these classifications in dimension 2 over domains containing $\\Q$, dimension 2 over fields of characteristic $p$, and dimension 3 over fields of characteristic zero. We discuss the generic characteristic 0 case. We determine the invariants and conjugacy classes of strictly triangular maps of maximal order in all dimensions over fields of characteristic $p$. They turn out to be equivalent to a map of the form $(x_1+f_1,\\ldots,x_n+f_n)$ where $f_i\\in x_n^{p-1}k[x_{i+1}^p,\\ldots,x_n^p]$ if $1\\leq i\\leq n-1$ and $f_n\\in k^*$.", "revisions": [ { "version": "v1", "updated": "2013-07-24T15:54:20.000Z" } ], "analyses": { "subjects": [ "14R20", "13A50", "20E45" ], "keywords": [ "triangular polynomial maps", "conjugacy classes", "invariants", "strictly triangular maps", "maximal order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.6469M" } } }