arXiv Analytics

Sign in

arXiv:1307.2441 [math.NT]AbstractReferencesReviewsResources

On Selmer groups of abelian varieties over $\ell$-adic Lie extensions of global function fields

Andrea Bandini, Maria Valentino

Published 2013-07-09Version 1

Let $F$ be a global function field of characteristic $p>0$ and $A/F$ an abelian variety. Let $K/F$ be an $\l$-adic Lie extension ($\l\neq p$) unramified outside a finite set of primes $S$ and such that $\Gal(K/F)$ has no elements of order $\l$. We shall prove that, under certain conditions, $Sel_A(K)_\l^\vee$ has no nontrivial pseudo-null submodule.

Related articles: Most relevant | Search more
arXiv:1109.2093 [math.NT] (Published 2011-09-09, updated 2012-01-17)
On the Hasse principle for finite group schemes over global function fields
arXiv:math/0605351 [math.NT] (Published 2006-05-13, updated 2007-11-05)
A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces
arXiv:math/0612263 [math.NT] (Published 2006-12-10)
The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields