{ "id": "1307.2441", "version": "v1", "published": "2013-07-09T13:14:46.000Z", "updated": "2013-07-09T13:14:46.000Z", "title": "On Selmer groups of abelian varieties over $\\ell$-adic Lie extensions of global function fields", "authors": [ "Andrea Bandini", "Maria Valentino" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Let $F$ be a global function field of characteristic $p>0$ and $A/F$ an abelian variety. Let $K/F$ be an $\\l$-adic Lie extension ($\\l\\neq p$) unramified outside a finite set of primes $S$ and such that $\\Gal(K/F)$ has no elements of order $\\l$. We shall prove that, under certain conditions, $Sel_A(K)_\\l^\\vee$ has no nontrivial pseudo-null submodule.", "revisions": [ { "version": "v1", "updated": "2013-07-09T13:14:46.000Z" } ], "analyses": { "subjects": [ "11R23", "11G35" ], "keywords": [ "global function field", "adic lie extension", "abelian variety", "selmer groups", "nontrivial pseudo-null submodule" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.2441B" } } }