arXiv:1306.1998 [math.PR]AbstractReferencesReviewsResources
Large Deviations of Shepp Statistics for Fractional Brownian Motion
Enkelejd Hashorva, Zhongquan Tan
Published 2013-06-09Version 1
Define the incremental fractional Brownian field $B_{H}(s+\tau)-B_{H}(s), H\in (0,1)$, where $B_{H}(s)$ is a standard fractional Brownian motion with Hurst index $H\in(0,1)$. In this paper we derive the exact asymptotic behaviour of the maximum $\max_{(\tau,s)\in[0,1]\times[0,T]} (B_{H}(s+\tau)-B_{H}(s)) $ for any $H\in (0,1/2)$ complimenting thus the result of Zholud (2008) for the Brownian motion.
Comments: 8 pages
Keywords: shepp statistics, large deviations, incremental fractional brownian field, standard fractional brownian motion, exact asymptotic behaviour
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0510237 [math.PR] (Published 2005-10-11)
Large deviations for the zero set of an analytic function with diffusing coefficients
Large Deviations of Vector-valued Martingales in 2-Smooth Normed Spaces
arXiv:0712.2401 [math.PR] (Published 2007-12-14)
Large Deviations for Riesz Potentials of Additive Processes